

2019 Annual Merit Review Cummins/Peterbilt SuperTruck II

Jon Dickson– Principle Investigator, Cummins Inc. Ken Damon – Peterbilt Motors Company

13 June 2019

Project ID:ACE102

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Cummins

Overview

<u>Timeline</u>

Begin: 10/1/2016

End: 9/30/2021

50% complete (03/19)

<u>Barriers</u>

Engine Efficiency ≥ 55% BTE

Freight Efficiency ≥ 100% FTE

Cost effective solutions

<u>Budget</u>

Total Project: \$40M

\$20M DoE - \$20M Partners

Total Spent: \$25.2M

\$12.6 = Partners

\$12.6 = DoE

<u>Partners</u>

Cummins – Powertrain

Eaton - Transmission

Peterbilt - Vehicle

Bridgestone – Tires

Walmart - Customer counsel

Relevance: Objectives

- Demonstrate a <u>minimum</u> of 55% BTE at a 65 mph cruise, on an engine dynamometer test stand
 - Same engine systems also demonstrated in vehicle, operating on real world drive cycles
- Achieve a <u>minimum</u> of 125% Freight Ton Efficiency (FTE).
 - FTE = MPG*Tons of Freight
- Track, promote and report on cost effective solutions
 - Prioritize solutions that have ~3 year payback period
 - Utilize customer counsel for understanding payback variables

Relevance: Energy Consumption

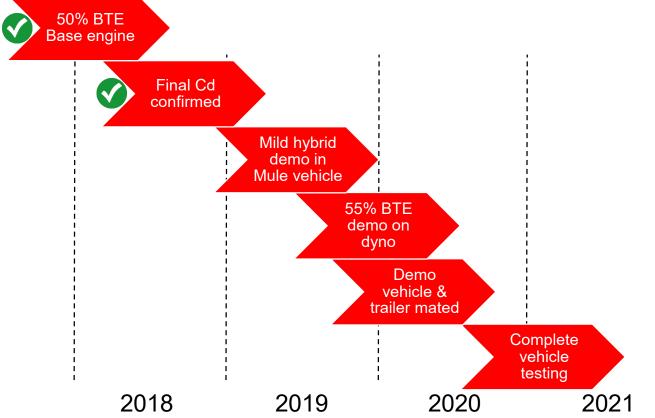
- Approximately 20% of U.S. transportation petroleum goes to the production of heavy truck fuel. Proposed improvements would save more than 400 million barrels of oil per year.*
 - Reduce imports and improve energy security
 - Reduce the cost of moving goods
- Heavy Truck GHG emissions account for a CO2 equivalent 420.7 MMT per year (35th edition of the Transportation Energy Data Book).
 - Improved air quality
 - Protect the public health and environment

^{*} https://energy.gov/eere/vehicles/vehicle-technologies-office-moving-america-forward-energy-efficient-vehicles

Milestones by Quarter

FY 2018	Description
Mule tire samples built	Tire samples built and tested, model data confirmed and included in overall system model
Weight budget confirmed	Chassis, cab/sleeper, trailer and powertrain targets established
Base engine at 50% BTE	Dynamometer demonstration of base engine at 50% BTE
Cooling system direction confirmed	Cooling system simulation with various routes and ambient conditions

Milestones by Quarter

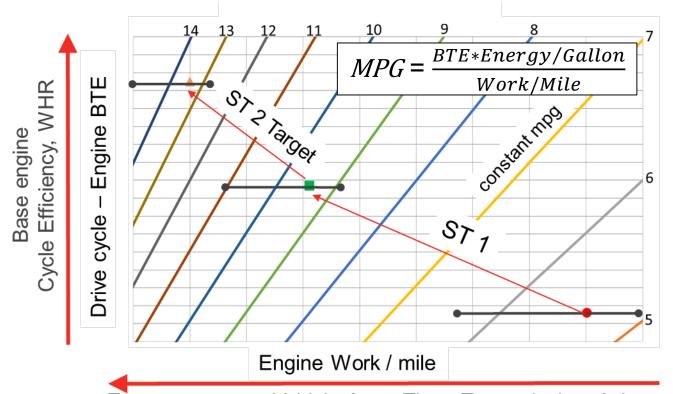


FY 2019	Description
Final Cd via simulation, confirmed	Final adjustment required for produce ability of prototype hardware
Tire RRC confirmed/tested	On-Road/Rig data
ACEM Features selected	Inertia restart, Coasting feature, weather, etc. included in mule testing and validation
HHRR combustion system and Low voltage hybrid	New combustion system for final demonstration and 12/48V system for energy recovery

Program Level Milestones

Approach: Cummins Powertrain

ENGINE TRANSMISSION DRIVE AXLE



New engine, transmission, and axle technology to meet freight / efficiency objectives.

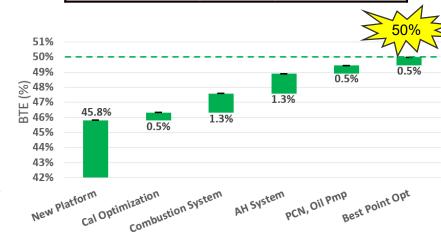
Technical Approach – SuperTruck II Target –



Energy recovery, Vehicle Aero, Tires, Transmission, Axle

Accomplishments Cummins Energy Recovery Drive (CERD)

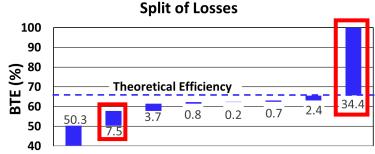
- Hardware integration confirmed
- Validation of controls systems integration
- Correlation of simulation results to test data
- Transmission shifting validated
- Great collaboration with ORNL!
- 3.4% fuel savings expected


Accomplishments

50% BTE Milestone Achieved

- Clean Sheet Base Engine
 - Without WHR
- New Technology applied
 - High Heat Release Rate Fuel System
 - Increased Compression Ratio
 - High Efficiency Turbocharger
 - Variable oil pump and PCN's
 - Low Friction Power Cylinder
 - Low Heat Transfer Exhaust
- 50% BTE optimized in power range from flat road cruise to fuel centroid

	Target	Demonstrated
Mech Efficiency	94.7%	95.2%
Closed Cycle	53.0%	52.6%
Open Cycle	100.0%	100.3%



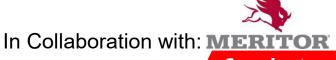
Approach for 55% BTE

- Build on 50% BTE Success
- Assess Theoretical Opportunity
- Additional Technology for 55%
 - WHR: Charge air, EGR, Coolant, Exhaust
 - Reduced Engine Friction
 - Improved Efficiency Turbocharger
 - Low Heat Transfer Cylinder Head & Piston
 - Improved Targeting of Injector Spray Angle
- 55% BTE Engine System will be Applied in 125% Freight Efficiency Demo Vehicle

Baseline Properties Comb. Dur. Comb. Eff. Friction Exhaust

	Target
Mech Efficiency	96%
Closed Cycle	53%
Open Cycle	101%
WHR Contrib.	4%

Peterbilt


Accomplishments Disengage-able Tandem Technology

- Forward axle disengages fully
- 2.4% Efficiency gain
- Minimal weight penalty
- Controls system developed
 - Integrated into ECM with battery cooling system
 - Smooth re-engagement
- 2 Test trucks, including Powertrain Mule vehicle
 - >4000 miles / 4500 shifts

Prior AMR Comments/Questions

"It seems like there was a lot of effort on weight reduction and with only a few fleets able to really add payload."

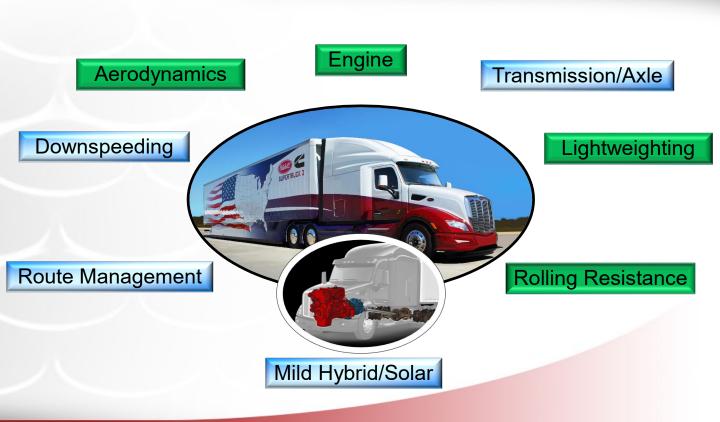
- Weight Management is a Standard Project Tracking Metric
- Peterbilt Offers Lightweight Options
- ST2 Design is Efficient
 - Purpose-built Cab and Interior
 - Short Wheelbase
 - No Exotic Materials

System	Weight Delta (lbs)
Powertrain/Cooling	(285)
Chassis Systems	(1540)
Outer Body	(150)
Energy Storage	(615)
Trailer	(2095)
TOTAL	(4685)
GOAL	(3800)

Prior AMR Comments/Questions

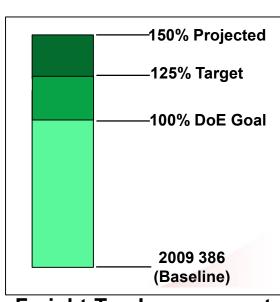
"It is not clear why single wide base tire was not selected for this program."

- Current Market: 90% Dual
- Market Sensitivities
 - Highest Tire Life: Duals
 - Highest Retread Rate: Duals
 - Lowest Weight: Wide Base
- Tire Construction
 - Vastly Different
 - Not Transferrable
- Commercial Value > Weight Penalty



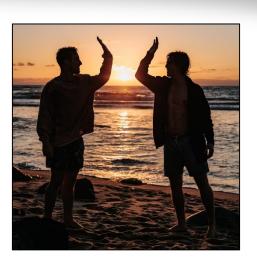
Duals vs. Wide Base

Technical Approach: Path to Target



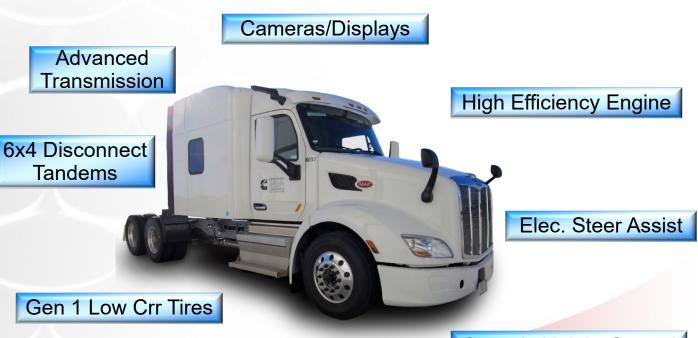
Technical Progress: Path to Target

- 55% Engine Efficiency
 - On Target
- Goals vs. Baseline
 - 56% Drag Reduction
 - Ahead of Target
 - 3800lb Weight Reduction
 - 30% Reduced Rolling Resistance



Freight-Ton Improvement

Technical Accomplishments

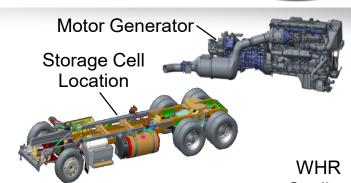

- Technology Mule:
 - Initial Build Complete
 - First Technology Upfit Complete
- Demonstrator:
 - Door Technology Selected
 - Outer Body Surfaces Complete
 - Body in White Design Complete
 - Interior Theme Selected
 - Interior Design in Process

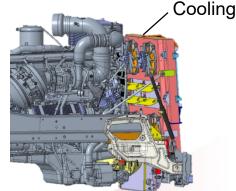
Technical Accomplishments

Model 579 Technology Mule (1.0)

Chassis Height Control

Lightweight Chassis


Technical Progress/Future Research Peterbilt



- Mule 2.0 Complete
 - Hybrid Motor Generator
 - 48v Storage Cell

- Mule 2.1 (3Q19)
 - Waste Heat Recovery (WHR) System
 - 48v Cooling Fans
 - 48v Electric/Hydraulic Steer
 - 48v eHVAC

- Hybrid Drive Algorithm Development
 - 4Q19 Through 2020

Technical Progress: Outer Body

- Digital Surfaces Complete
 - Scaled Clay Model (Sept '18)
 - Cab/Sleeper Surfaces (Oct '18)
 - Hood/Bumper Surface (Apr '19)
 - Fairing Surfaces (May '19)

Outer Body Freeze (Nov '19)

Technical Progress: Demonstrator

- Cab/Sleeper Body in White
 - Co-developed with Magna
 - Design Complete 2Q19
- Hood/Bumper, Fairings, Extenders
 - Internal Resources
 - Work in Progress 2Q19
- In Process Co-Development
 - eHVAC: Bergstrom
 - Wipers: Valeo
 - Interior: Point Innovation
 - Light/Aerodynamic Trailer: Great Dane

Future Research: Driver Environment Peterbilt

- Full Scale Cab Buck
- Operator Experience
 - Ingress/Egress
 - Spatial Appreciation
 - Visibility
 - Feature Ergonomics
 - In-Cab Dynamics/HMI
- Augmented Reality Studies
 - Digitally Developed Interior
 - Halolens Technology
 - Customer Voice (Walmart, FedEx...)

Technologies and Collaboration

Forward-L

Cameras/Displays

6x4 Disconnect Tandems

48v Power Steering

Metalsa

Quality as a way of life

Lightweight Chassis

High Efficiency Engine/Transmission

Advanced Cycle Efficiency Manager

MMC Brake Drums

Aerodynamic Body

Bridgestone

Gen 2 Low Crr Tires

ARCONIC

24.5" Aluminum Wheels

Mild Hybrid Driveline

Technologies and Collaboration

Active Extenders

Chassis Height Control

Forward-Looking Yaw Sensor

6x4 Disconnect Tandems

Cameras/Displays

48v Power Steering

Lightweight Chassis

High Efficiency Engine/Transmission

MMC Brake Drums

Aerodynamic Body

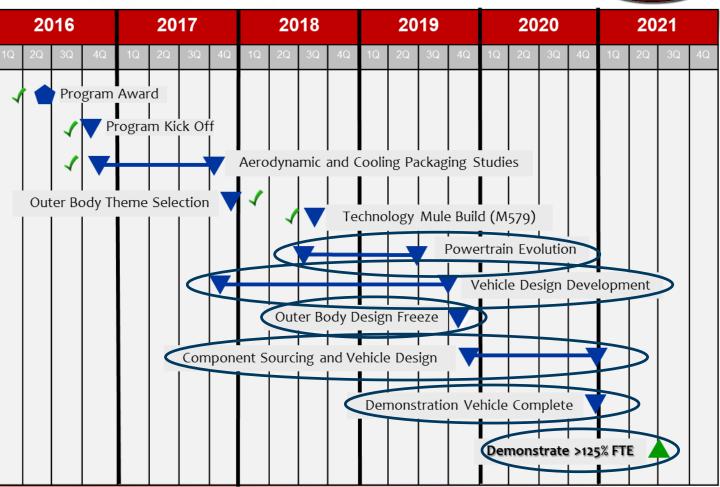
Gen 2 Low Crr Tires

24.5" Aluminum Wheels

Advanced Cycle Efficiency Manager

Mild Hybrid Driveline

48v eHVAC



Future Work

Proposed Future Research

- 55% BTE Demo Work
 - Develop and refine technology for added base engine efficiency
 - Dual loop EGR control strategy for FE/NOx optimization
 - WHR system integration and calibration
- Deliver Cost Effective Solutions
 - Refine cost/payback model optimization
 - Assess manufacturing alternatives for low heat transfer components
- Demonstrate >125% FTE improvement
 - Powertrain Mule truck evolution
 - Integrate & develop mild hybrid system, EGR, & WHR
 - Refine and build Demonstrator truck and trailer
 - Develop adjustable ride height control system
 - Demonstrate active aerodynamic controls

Program Summary

- Powertrain
 - Powertrain development in mule vehicle is on plan
 - Engine development on plan toward 55% BTE target
 - Powertrain targets on plan to meet FTE
- Vehicle
 - New aerodynamic system is ahead of target
 - Lightweight chassis has been prototyped in PT Mule
 - Bridgestone is ahead of aggressive Crr reduction target
- Cummins and Peterbilt will deliver a minimum 125% FTE and 55% BTE!

THANK YOU!

QUESTIONS